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The article addresses the challenge of automatic metaphor identification, 
one of the most complex tasks in natural language processing (NLP). 
Based on the principles of cognitive linguistics, which define metaphor as 
a fundamental mechanism of thinking (Lakoff & Johnson, 1980), the role 
of metaphor as a powerful framing tool in political and media discourse is 
explored. Although the ability to analyse metaphorical patterns at scale is 
crucial for identifying manipulative technologies, the process of recognising 
them is complicated by contextual dependence, creativity, and the need for 
encyclopaedic knowledge. One of the main issues addressed in this article is 
the assessment of the potential of modern large language models (LLMs) for 
solving the task of automatic metaphor identification. The paper compares 
two key approaches: using the so-called ‘innate’ knowledge of models 
without additional tuning (the ‘zero-shot’ approach) and their specialised 
adaptation through fine-tuning. The effectiveness of the latest models (as of 
July 2025) from leading developers was investigated: OpenAI (GPT-4o), 
Google (Gemini 2.5 Pro, Gemini 2.5 Flash), and Anthropic (Claude Sonnet 
4). Special attention was paid to the methodology of the experiment. The 
analysis was based on the NAACL 2020 Shared Task on Metaphor Detection 
corpus, and standard binary classification metrics were used to evaluate the 
performance of the models: precision, recall, and the F1-score. The article 
describes the fine-tuning procedure and identifies practical limitations 
associated with varying levels of tool availability in leading artificial 
intelligence ecosystems. The results of the study showed that the baseline 
models demonstrate low and unbalanced performance, while the fine-
tuning procedure significantly improves their output (F1-Score increases 
by 24-29%). A comparative analysis of the retrained models revealed that 
GPT-4o achieves a better balance between recall and precision (F1-Score 
64.20%), while Gemini 2.5 Flash retains a slight advantage in precision. The 
article makes an important contribution to the study of the capabilities of 
LLMs for analysing figurative language, demonstrating that fine-tuning is an 
extremely important method for adapting them to complex linguistic tasks.
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Introduction. A new stage in the development 
of cognitive linguistics, initiated by Lakoff and 
Johnson’s influential book Metaphors We Live By, 
revealed that metaphor is not merely a peripheral 
stylistic device but a core mechanism shaping human 
thought and cognition According to the theory of 
conceptual metaphor, people systematically draw 
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У статті окреслено проблему автоматичної ідентифікації метафор – 
одного з найскладніших завдань у сфері обробки природної мови. 
Базуючись на положеннях когнітивної лінгвістики, що визначає 
метафору як фундаментальний механізм мислення (Lakoff & 
Johnson, 1980), досліджено її роль як інструменту фреймінгу 
в політичному та медійному дискурсах. Підкреслено, що здатність 
до масштабованого аналізу метафоричних патернів є важливою для 
виявлення маніпулятивних технологій, однак процес розпізнавання 
метафор ускладнюється контекстуальною залежністю, креативністю 
та необхідністю енциклопедичних знань. Дослідження має на меті 
здійснення порівняльної оцінки потенціалу великих мовних моделей 
(LLM) для вирішення завдання автоматичної ідентифікації метафор. 
У роботі порівнюються два ключові підходи: тестування базових 
можливостей моделей за допомогою методу нульового запиту (zero-shot) 
та їх спеціалізована адаптація з використанням методу доналаштування 
(fine-tuning). Досліджено ефективність флагманських(станом на липень 
2025 року) моделей від провідних розробників: OpenAI (GPT-4o), 
Google (Gemini 2.5 Pro, Gemini 2.5 Flash) та Anthropic (Claude Sonnet 4). 
Окрему увагу приділено методології обробки експериментальних даних 
на основі корпусу NAACL 2020 Shared Task on Metaphor Detection. Для 
оцінки продуктивності моделей використано стандартні метрики бінарної 
класифікації: точність (Precision), повнота (Recall) та узагальнена оцінка 
F1-Score. У статті описано процедуру доналаштування та виявлено 
практичні обмеження, пов’язані з різним рівнем доступності інструментів 
у провідних екосистемах штучного інтелекту. Результати дослідження 
продемонстрували, що фундаментальні моделі показують низьку та 
незбалансовану ефективність, тоді як процедура доналаштування 
значною мірою покращує їхню продуктивність (F1-Score зростає на 
24-29%). Порівняльний аналіз доналаштованих моделей штучного 
інтелекту виявив, що GPT-4o досягає кращого балансу між точністю 
та повнотою (F1-Score 64,20%), тоді як Gemini 2.5 Flash зберігає 
невелику перевагу в точності. Проведений порівняльний аналіз робить 
важливий внесок у дослідження можливостей LLM для аналізу метафор, 
демонструючи, що доналаштування є важливим методом для їхньої 
адаптації до складних лінгвістичних завдань.

upon knowledge from concrete, bodily experienced 
domains (such as journeys, wars, or construction) 
in order to make sense of and structure abstract 
concepts, including love, evil, or time. Metaphors 
are ‘fundamental mechanisms of human cognition’ 
that shape our understanding by projecting 
everyday, familiar experiences onto abstract ideas 
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(Lakoff & Johnson, 1980). This  function makes 
metaphor a powerful device not only for everyday 
communication but also for exerting targeted 
influence in socially significant discourses.

The metaphor takes on particular significance 
in the political and media domains, where it serves 
as a key tool for ‘framing’, which is the process 
of constructing social reality through language. 
As demonstrated by research in the field of critical 
analysis of metaphors, particularly in the works of 
J. Charteris-Black, the strategic use of metaphorical 
models allows communicators to simplify complex 
political phenomena, give them emotional colouring 
and promote certain ideological positions (Charteris-
Black, 2004). Metaphorical frames such as ‘taxes as 
a burden,’ ‘immigration as a flow,’ or ‘the economy 
as a sick organism’ do not simply describe reality, 
but actively shape its perception, influencing public 
opinion and political decisions (Musolff, 2006). 
In this context, the ability to systematically and 
scalably analyse metaphorical patterns in large 
text corpora becomes a critical task for identifying 
manipulative techniques, analysing propaganda, and 
understanding the dynamics of public sentiment.

However, automating this process is one of the 
classic ‘hard’ tasks for natural language processing 
(NLP). First of all, the challenge comes from 
the deep contextual dependence of metaphors: 
a word can be used literally in one sentence but 
metaphorically in another, which requires the system 
to be able to subtly distinguish between shades 
of meaning. Such a task is known as Word Sense 
Disambiguation. Additionally, effective recognition 
of metaphors often requires encyclopedic knowledge 
that extends beyond linguistic patterns. For example, 
to interpret the English expression ‘He shot down my 
arguments’ as a metaphor, the system must know that 
no real weapons were used and, as a result, activate 
the conceptual metaphor ARGUMENT IS WAR. 
This knowledge gap, which goes beyond linguistic 
patterns, makes automatic metaphor recognition one 
of the most difficult problems for NLP (Shutova, 
2010). Moreover, language is a dynamic system 
that constantly generates new metaphors that cannot 
be predicted in advance, as well as included in any 
dictionary or knowledge base.

With the advent of large language models (LLMs) 
based on the Transformer architecture (Vaswani et 
al., 2017), new opportunities for solving this problem 
have emerged. Notably, in Ukrainian linguistics, the 
advantages and limitations of using large language 
models have been described in the context of 
automating the process of genre classification of 
literary texts (Pasichnyk, Yaromych,  2025). Having 
been trained on vast amounts of text, these models 
are capable of capturing complex semantic and 
contextual patterns, potentially enabling them to 

identify metaphorical expressions. As a result, two 
fundamentally different approaches have emerged: 
using the model’s basic knowledge through carefully 
constructed instructions without providing examples 
of how to perform a similar task (the zero-shot 
method) and specialised adaptation of the model to a 
specific task by fine-tuning it on labelled examples.

This research paper focuses on identifying 
metaphors at the level of individual lexical units, 
which is in line with modern computational 
linguistics methodology, specifically the MIPVU 
procedure (Steen et al., 2010). Such a token-level 
approach allows for the creation of the most objective 
and quantifiable criteria for model evaluation.

For a long time, one of the key problems in 
the study of metaphor was the lack of uniform, 
consistent criteria for its identification in real 
discourse. Researchers often relied on their own 
intuition, which led to inconsistencies in analysis 
and made it impossible to reproduce results. 
To address this issue, the Pragglejaz research group 
proposed the Metaphor Identification Procedure 
(MIP) in 2007, the first clear and systematic 
method for identifying metaphorically used words 
in a text. MIP defines a reproducible, step-by-
step process: the analyst identifies the contextual 
meaning of each lexical unit and then compares 
it with its most basic, concrete meaning, which is 
often determined by a dictionary. If the contextual 
meaning contrasts with the basic meaning but can 
be understood in comparison with it, the word is 
marked as metaphorical (Pragglejaz Group, 2007). 
This key criterion formalised the intuitive definition 
of ‘understanding one thing through another’ into 
a practical rule, enabling different researchers 
to reliably and consistently identify metaphors, 
achieving a significantly higher level of consistency.

Based on MIP, J. Steen and his colleagues 
developed an extended protocol called MIPVU 
(Metaphor Identification Procedure VU University) 
with more detailed instructions for borderline cases. 
Using MIPVU, a large corpus of contemporary 
English text was systematically annotated, resulting 
in the creation of the VU Amsterdam Metaphor 
Corpus (Steen et al., 2010). This corpus, consisting 
of 117 text fragments (~190,000 lexical units) from 
four different genres (academic, news, colloquial, 
literary), has become the industry’s gold standard 
and benchmark. Each word in these texts was 
labelled as metaphorical or literal with a high 
level of agreement between annotators. Virtually 
all subsequent computer studies on metaphor 
identification have used the VUA corpus to train 
and evaluate their models, making it a fundamental 
empirical basis for the entire field.

The first wave of metaphor identification 
automation coincided with the emergence of deep 
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transformer models such as BERT. Researchers 
have begun to use large pre-trained encoder models 
(BERT, RoBERTa, etc.) to identify metaphors at the 
individual word level. An important milestone was 
the Shared Task on Metaphor Detection competition 
at the NAACL conference in 2020, which used the 
VUA corpus as the main data for evaluation.

In this competition, nearly all teams that achieved 
the best results utilised fine-tuned transformer encoder 
models. In general, the most successful models were 
based on BERT-class architectures adapted to the task 
at hand through controlled fine-tuning of specially 
labelled data. This approach has, in fact, transformed 
general language models into highly specialised 
metaphor classifiers. The results of the competition 
confirmed the effectiveness of this approach: the 
winner achieved an F1-Score of approximately 77% 
on the VUA test set, which significantly exceeded 
the baseline models (Leong, Beigman Klebanov & 
Shutova, 2020). Thus, the fine-tuned transformer 
encoder has become the benchmark against which all 
newer approaches are compared.

The latest achievements presented a 
fundamentally different approach to understanding 
language, and on this basis, large generative 
language models such as GPT-3 and its successors 
were developed, differing from previous BERT-class 
models in both architecture and capabilities. The key 
differences can be summarised as follows:

Architecture: BERT is an encoder-only 
transformer. It reads the entire sentence at once 
(bidirectionally) to create a rich contextual 
representation of each word, making it ideal 
for text comprehension and classification tasks. 
GPT‑class models, on the other hand, are decoder-
only transformers. They read text from left to right 
and are trained to solve a single task: predicting the 
next word. This makes them ideal models for text 
generation and continuation.

The principle of fine-tuning, training, and 
adaptation: BERT is tuned on a discriminative 
task (e.g., ‘fill in the blank in a sentence’), which 
makes it a powerful ‘expert analyst’ with a deep 
understanding of context. However, to perform any 
new task (e.g., identifying metaphors), it requires 
fine-tuning on thousands of examples to add a new 
classifier layer to its ‘brain.’ GPT, on the other hand, 
learns from a generative task. This training makes 
it a kind of ‘universal writer’ that can perform tasks 
after receiving instructions in a prompt without any 
additional training (zero-shot). This ability to learn 
in context, first demonstrated in the work on GPT-3 
(Brown et al., 2020), made it possible to perform 
tasks that previously required significant effort to 
prepare data and fine-tune models.

Thus, the evolution from MIP and manual 
annotation, through the first wave of automation 

with pre-trained BERT classifiers, to modern 
massive generative models illustrates the progress 
in metaphor identification research. Each link builds 
on the previous one: The ‘gold standard’ annotations 
from the MIP era are still used to evaluate 
fundamental and fine-tuned models. The study aims 
to explore the capabilities and limitations of the latest 
available technologies (as of July 2025), determining 
the extent to which modern generative LLMs can 
match or surpass carefully fine-tuned models of the 
previous generation in such a complex task.

The purpose of this article is to conduct 
a comprehensive comparative analysis of the 
effectiveness of leading large language models 
for identifying metaphors using two methods: 
testing the model’s capabilities using zero-shot 
and performance evaluations after specialised 
fine-tuning. To achieve the set goal, the following 
research tasks were formulated:

•	 What is the initial effectiveness of the GPT-4o, 
Gemini 2.5 (Pro and Flash) and Claude Sonnet 4 
models in identifying metaphors without special 
training?

•	 How significantly does the fine-tuning 
procedure with a relatively small sample size (1,500 
examples) improve the performance of the GPT-4o 
and Gemini 2.5 Flash models?

•	 Which of the pre-tuned models demonstrates 
the best balance between precision and recall, and 
how does pre-tuning affect their trade-off between 
these two metrics?

•	 What practical limitations exist in the 
ecosystems of leading AI developers regarding the 
availability of customisation tools for individual 
researchers?

Materials and methods. Data corpus: 
NAACL  2020 Metaphor Detection Corpus. 
The  experimental part of the work was conducted 
based on the NAACL 2020 Shared Task on Metaphor 
Detection competition dataset, which is based on 
the Amsterdam Metaphor Corpus (VUA). The VUA 
corpus consists of 117 text fragments extracted from 
the British National Corpus (BNC) and represents 
four different genres: academic texts, news, fiction 
and colloquial speech. This genre diversity ensures 
broad coverage of different language styles and 
contexts. All words in the corpus were annotated 
according to the criterion of metaphoricity in 
accordance with the MIPVU (Metaphor Identification 
Procedure VU University) procedure, which is a 
systematic protocol that ensured a high level of 
agreement between annotators (Cohen’s coefficient 
κ > 0.8). According to MIPVU, a word is considered 
metaphorical if it is used in a non-literal sense.

A subset of data from NAACL 2020 was used 
for the study. In particular, 1500 sentences from the 
training part of the corpus were selected for model 
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tuning, and an official test set of 203 sentences 
was used to evaluate effectiveness. This test set 
contains 708 words annotated as metaphors. This 
sample size was chosen to ensure the practical 
feasibility of the experiments while maintaining the 
representativeness of the entire corpus.

Models and tools. The study evaluated a number 
of leading large language models. Using the zero-
shot prompt method, the models were used in their 
original and publicly available state to test their 
basic capabilities. Four artificial intelligence models 
were selected for the study:

•	 GPT-4o (OpenAI) is OpenAI’s flagship 
(as  of July  2025) multimodal model, known for its 
powerful reasoning capabilities and human-level 
performance on many professional and academic 
benchmarks. In the experiments, the model was 
used via the official ChatGPT in text mode.  
(https://chatgpt.com/)

•	 Claude Sonnet 4 (Anthropic) – an advanced 
model from Anthropic, designed for reliable and 
‘hybrid’ thinking in large-scale tasks. The model has 
an extended context window (up to 200,000 tokens) 
and is optimised to achieve a balance between speed 
and cost. Access to the model was provided through 
its official website for testing using the zero-shot 
prompt method. (https://claude.ai/)

•	 Gemini 2.5 Pro (Google DeepMind) is the 
most powerful version (as of July 2025) in the 
Gemini series, positioned as a ‘thinking model’ 
with advanced capabilities in logical thinking, 
coding, and multimodal understanding. In her work, 
it is used as a fundamental model via the Gemini 
website. (https://gemini.google.com/app)

•	 Gemini 2.5 Flash (Google DeepMind) – a version 
of Gemini optimised for speed and cost efficiency, 
providing the best compromise between price and 
performance. (https://gemini.google.com/app)

GPT-4o and Gemini 2.5 Flash were selected for 
the fine-tuning experiments. GPT-4o was fine-tuned 
using the OpenAI API, while Gemini 2.5 Flash 
was fine-tuned using the Google Cloud Vertex AI 
platform. It is important to note that no fine-tuning 
was performed for Claude Sonnet 4 due to the lack 
of relevant public functionality in the Anthropic 
API at the time of the study, nor was any fine-tuning 
planned for Gemini 2.5 Pro (as of July 2025). 

Experiment procedure. Zero-Shot prompt testing 
strategy. Using a zero-shot prompting method, a 
single unified prompt was developed for queries to 
each model. The prompt was designed to clearly 
define the task (identifying metaphorical words 
in a sentence) and establish a strict output format. 
Providing a precise definition and example of a 
metaphor was intended to minimise ambiguity for 
the models. The full text of the prompt used in the 
study is provided below:

You are a precise and methodical linguistic 
analyzer. Your sole task is to identify words used 
metaphorically in the provided sentence.

A metaphor is a word used in a non-literal sense 
to create an analogy or suggest a resemblance. 
For example, in the sentence “He navigated a sea of 
troubles,” the word “sea” is a metaphor.

Your output must strictly follow these rules:
List ONLY the words that are used 

metaphorically.
Separate the words with a single comma and a 

space.
Do not include any punctuation attached to the 

words (e.g., for “track,” you must write “track”).
If you find no metaphors, you must output the 

single word: none.
Do not include any introductory text, 

explanations, or summaries.
Sentence to Analyze:
Each test sentence was added after the line 

‘Sentence to Analyse:’. This procedure was applied 
to all four models without any additional tuning, 
which made it possible to evaluate their basic 
ability to understand instructions and metaphorical 
language.

Model fine-tuning procedure. Specialised training 
datasets were created from the VUA corpus for fine-
tuning, formatted according to the requirements of 
each platform.

•	 OpenAI fine-tuning (GPT-4o):  A training 
file was prepared in JSONL format with the Chat 
Completion structure expected by the OpenAI 
API. Each training example is a JSON object with 
an array of messages containing messages with 
the roles system, user, and assistant, where the 
assistant provides the correct answer (metaphors). 
This ensures that the model learns from pairs of 
‘query→response’.

{“messages”: [{“role”: “system”, “content”: 
“You are a linguistic analyzer. Your task is to 
identify metaphorical words in a sentence. List them 
separated by a comma, or output ‘none’ if there 
are no metaphors.”}, {“role”: “user”, “content”: 
“Sentence: \”\”There are other things he has, on 
his own admission, not fully investigated, like the 
value of the DRG properties, or which part of the 
DRG business he would keep after the break up 
.\”\”\”;;;;”}, {“role”: “assistant”, “content”: 
“things, on, admission, part, keep, after”}]}

•	 Google Vertex AI fine-tuning (Gemini 
Flash):  For  Gemini, in accordance with the 
requirements of the Google Cloud Vertex AI 
platform, a separate file was created where each line 
is a JSON object with the contents key. This key 
contains an array of two objects with the roles user 
(containing the request) and model (containing the 
reference response). 



66

“Folium” № 7 (2025) 

{“contents”: [{“role”: “user”, “parts”: 
[{“text”: “Identify all metaphorical words in the 
sentence. Sentence: \”\”There are other things he 
has, on his own admission, not fully investigated, 
like the value of the DRG properties, or which part 
of the DRG business he would keep after the break up 
.\”\”\”;;;;”}]}, {“role”: “model”, “parts”: [{“text”: 
“things, on, admission, part, keep, after”}]}]}

Gemini 2.5 Flash was fine-tuned using the 
Tuning graphical interface on the Google Cloud 
Vertex AI platform, where the relevant data file 
was uploaded. After completing the fine-tuning, the 
resulting custom models were tested on the same test 
set using a unified prompt to ensure consistency.

Assessment metrics. Standard binary classification 
metrics were used for quantitative measurement and 
comparison of model performance in the metaphor 
identification task: Precision, Recall and F1-Score.

•	 Precision – the proportion of words that 
the model correctly identified as metaphors 
among all words it labelled as metaphors. The 
formula: Precision = TP / (TP + FP), where TP is 
true positives and FP is false positives.

•	 Recall – the proportion of real metaphors 
that the model successfully identified. The 
formula: Recall = TP / (TP + FN), where FN – false 
negative results.

•	 F1-Score – the average harmonic between 
accuracy and precision, providing a single balanced 
assessment of overall performance. The formula: F1 
= 2 × (Precision × Recall) / (Precision + Recall).

In the above formulas, TP (True Positive) 
is a word that is a metaphor and has been 
correctly identified by the model. FP (False 
Positive) – a word that the model incorrectly 
identified as a metaphor. FN (False Negative) – a 
metaphorical word that the model was unable to 
detect. All metrics were used to identify metaphors, 
with the main focus on F1-Score as the most 
balanced indicator.

Results and discussion. The effectiveness of 
fundamental models (Zero-Shot Performance). In the 
first stage, four models without prior specialisation 
were tested to determine their ‘innate’ ability to 
identify metaphors. The results presented in Table 
1 indicate not only low overall efficiency, but also 

the existence of significantly different, yet equally 
unbalanced strategies applied by the models.

Data analysis revealed three approaches. Gemini 
family models act as ‘highly accurate but cautious 
classifiers.’ They demonstrate the highest precision 
among all tested models (Pro – 69.38%, Flash – a 
record 80.68%), which proves their ability to avoid 
false positives. However, this strategy comes at the 
cost of low recall (Pro – 30.08%, Flash – 20.06%), 
which causes the models to ignore the vast majority 
(70-80%) of real metaphors.

At the opposite end of the spectrum is Claude 
Sonnet 4, which employs a strategy of ‘maximum 
but chaotic coverage’ and shows the highest recall 
(55.23%), identifying more than half of the total 
number of metaphors. However, as evidenced 
by the record high false positive rate (FP=1078), 
this is achieved at the expense of extremely low 
precision (26.62%). A qualitative analysis of errors 
showed that the model tends to label almost any 
emotionally charged, abstract, or even neutral words 
as metaphors, which makes its results practically 
unusable without careful manual filtering.

The GPT-4o model did not demonstrate a clear 
advantage in either precision or recall, achieving a 
mediocre F1-Score. Therefore, it can be concluded 
that none of the basic models is a reliable tool for 
automatic metaphor analysis, as each of them suffers 
from a critical imbalance between key metrics.

The impact of fine-tuning. The fine-tuning 
procedure on a relatively small sample of 1500 
examples radically changed the performance of 
both models, confirming its critical importance for 
adapting LLM to specialised linguistic tasks.

GPT-4o demonstrated the most impressive 
increase in efficiency, with its overall F1-Score 
soaring from 39.79% to 64.20% – a jump of 24.4 
percentage points. The key transformation was the 
increase in recall (from 32.49% to 67.37%): the fine-
tuned model began to find twice as many metaphors 
as its basic version. This indicates that the fine-
tuning allowed the model to move from an uncertain 
strategy to a balanced and highly effective approach.

Gemini 2.5 Flash has also undergone significant 
changes (F1-Score has almost doubled, from 32.13% 
to 61.05%). Remarkably, the model has learned to 

Table 1
Results of testing basic models (using Zero-Shot prompting)

Model TP FP FN Precision Recall F1-Score 
GPT-4o 230 218 478 51,34% 32,49% 39,79%
Claude Sonnet 4 391 1078 317 26,62% 55,23% 35,92%

Gemini 2.5 Pro 213 94 495 69,38% 30,08% 41,97%
Gemini 2.5 Flash 142 34 566 80,68% 20,06% 32,13%

Note: The total number of metaphors in the test sample (Ground Truth) is 708.
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find a compromise: it ‘sacrificed’ its precision (from 
80.68% to 62.87%) to significantly increase recall 
(from 20.06% to 59.32%). 

Qualitative analysis of errors and strategies. 
A deeper understanding of the differences in model 
behaviour is provided by a qualitative analysis of 
their typical errors.

An analysis of false positives revealed that the 
base Claude Sonnet 4 was overly liberal, often 
mistakenly labelling almost any vivid or abstract 
words as metaphors. For example, in the sentence 
“her romance with the young king was quashed for 
political reasons,” the model incorrectly labelled 
political and romance, whereas only the word 
quashed was metaphorical. It also often confused 
metaphor with metonymy (labelling Whitehall as a 
metaphor in the expression ‘throws a spanner in the 
Whitehall machinery’) or marked entire idiomatic 
expressions, including obviously literal words such 
as friend and sue. The fine-tuned GPT-4o, on the 
other hand, exhibited a different pattern of errors: 
it recognised metaphorical constructions better, but 
sometimes expanded their boundaries excessively, 
including auxiliary words in the answer (e.g., about, 
shaped in the phrase “hugged about by a brood of... 
shaped like candle snuffers”) or even technical terms 
such as articulated in the phrase “articulated or 
double-decker trams”.

The False Negatives analysis showed that the 
basic models, especially Gemini, often missed subtle 
or conventionalised metaphors. They ignored the 
metaphorical use of common verbs and prepositions. 
For example, the fundamental Gemini model did not 
recognise the metaphorical use of the word incoming 
in the expression “an incoming Labour government 
would turn large areas of Whitehall upside down”. 
The models also had difficulty recognising creative, 
unusual comparisons, such as candle snuffers in 
the phrase ‘hugged about by a brood of smaller 
roofs shaped like candle snuffers’, which Gemini 
missed. The fine-tuning improved this situation 
significantly:  The fine-tuning of Gemini 2.5 Flash 
has enabled it to successfully recognise both implicit 
verbal metaphors (e.g., exert in ‘exert a fascination’) 
and more creative constructions such as snuffers, 
indicating a significant increase in its sensitivity to 
less obvious cases.

A direct comparison clearly demonstrates the 
effect of fine-tuning. In the sentence ‘That is the first 
of many... quango-like bodies recommended by the 

review,’ the base GPT-4o found nothing, while the 
fine-tuned version correctly identified That, bodies, 
and recommended. This indicates that fine-tuning not 
only improves performance but also fundamentally 
changes the model’s ability to perform deep 
semantic analysis.

Discussion and methodological conclusions. 
A  comparative analysis of the adjusted models 
shows that, although both achieved high and similar 
results, they retained their unique ‘character’. 
GPT-4o is the formal winner according to the 
F1-Score summary metric and the absolute leader 
in terms of completeness. This makes it an optimal 
tool for research aimed at maximising the detection 
of metaphorical expressions, where the researcher 
is prepared to perform further manual verification 
to eliminate a certain number of false positives. 
Instead, Gemini 2.5 Flash retained a slight advantage 
in precision, which partly makes it a reliable choice 
when minimising ‘noise’ in the results is a priority.

It is also important to note that at the time of the 
study (July 2025), Anthropic’s public API did not 
provide accessible functionality for fine-tuning, 
which made it impossible to include the Claude 
model in the second stage of the experiment. This 
is an important practical limitation for individual 
researchers and indicates varying levels of openness 
and accessibility of tools across leading AI platforms, 
which can significantly influence the directions and 
opportunities for academic research in this field.

Conclusions. The study aimed to conduct 
a comprehensive comparative analysis of the 
effectiveness of leading large language models in 
the task of metaphor identification using zero-shot 
prompting and fine-tuning methods. The experiments 
conducted provided answers to the research questions 
and led to a number of important conclusions. 

First, it was found that base LLMs without 
special training demonstrate low and unbalanced 
performance for reliably solving the task. Models 
either show excessive caution, achieving high 
precision at the expense of extremely low recall 
(such as Gemini 2.5 Flash with an F1-Score of 
32.13%) or, alternatively, generate a large number of 
false positives due to their pursuit of recall (such as 
Claude Sonnet 4 with an F1-Score of 35.92%).

Secondly, it has been experimentally proven that 
the fine-tuning procedure on a relatively small sample 
(1500 examples) is an extremely effective method 
of specialising models. Both pre-trained models 

Table 2
Results of testing fine-tuned models

Model TP FP FN Precision Recall F1-Score 
GPT-4o 477 301 231 61,31% 67,31% 64,2%
Gemini 2.5 Flash 420 248 288 62,87% 59,32% 61,05%
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demonstrated a significant increase in the F1-Score 
performance metric: GPT-4o – by 24.4% (to 64.20%), 
and Gemini 2.5 Flash – by 28.9% (to 61.05%), which 
indicates a high potential for fine-tuning to adapt 
LLM to highly specialised linguistic tasks.

Thirdly, a comparative analysis of fine-tuned 
models demonstrated that GPT-4o achieves a better 
balance between precision and recall, displaying 
the highest F1-Score and significantly higher recall 
(67.37%), making it an optimal tool for research 
aimed at maximising metaphor detection. Gemini 2.5 
Flash, on the other hand, retains a slight advantage in 
precision (62.87%), which can be useful in tasks that 
require minimising false positives.

Fourth, significant practical limitations were 
identified that characterise the differences in the 
ecosystems of leading AI developers. Unlike 
OpenAI and Google, at the time of the study, the 
Anthropic platform did not provide public access to 
fine-tuning tools, which is an important factor for the 
scientific community.

Prospects for further research include expanding 
the amount of training data for fine-tuning, testing 
models on corpora from other languages and 
genres, and moving from token-level analysis to 
more complex tasks, such as identifying conceptual 
metaphors and their frames. However, the results 
obtained already demonstrate that properly adapted 
large language models can become a powerful tool 
in the hands of linguists and researchers of various 
types of discourse.
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