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The article addresses the challenge of automatic metaphor identification,
one of the most complex tasks in natural language processing (NLP).
Based on the principles of cognitive linguistics, which define metaphor as
a fundamental mechanism of thinking (Lakoff & Johnson, 1980), the role
of metaphor as a powerful framing tool in political and media discourse is
explored. Although the ability to analyse metaphorical patterns at scale is
crucial for identifying manipulative technologies, the process of recognising
them is complicated by contextual dependence, creativity, and the need for
encyclopaedic knowledge. One of the main issues addressed in this article is
the assessment of the potential of modern large language models (LLMs) for
solving the task of automatic metaphor identification. The paper compares
two key approaches: using the so-called ‘innate’ knowledge of models
without additional tuning (the ‘zero-shot’ approach) and their specialised
adaptation through fine-tuning. The effectiveness of the latest models (as of
July 2025) from leading developers was investigated: OpenAl (GPT-40),
Google (Gemini 2.5 Pro, Gemini 2.5 Flash), and Anthropic (Claude Sonnet
4). Special attention was paid to the methodology of the experiment. The
analysis was based on the NAACL 2020 Shared Task on Metaphor Detection
corpus, and standard binary classification metrics were used to evaluate the
performance of the models: precision, recall, and the Fl-score. The article
describes the fine-tuning procedure and identifies practical limitations
associated with varying levels of tool availability in leading artificial
intelligence ecosystems. The results of the study showed that the baseline
models demonstrate low and unbalanced performance, while the fine-
tuning procedure significantly improves their output (F1-Score increases
by 24-29%). A comparative analysis of the retrained models revealed that
GPT-40 achieves a better balance between recall and precision (F1-Score
64.20%), while Gemini 2.5 Flash retains a slight advantage in precision. The
article makes an important contribution to the study of the capabilities of
LLMs for analysing figurative language, demonstrating that fine-tuning is an
extremely important method for adapting them to complex linguistic tasks.
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MNOPIBHAJBHUN AHAJII3 EGEKTUBHOCTI BEJIMKUX MOBHUX MOJIEJIEN
JJAS ITEHTUPIKAIIII META®OP: METOJIU HYJILOBOT O 3AIIUTY TA

JOHAJTAILITYBAHHA

SkiB buctpos

00KmMop ¢hinono2iunux Hayx, npogecop,

Kapnamcokuii nayionanvuuii ynieepcumem imeni Bacuns Cmeghanuka

Hecrop boabsmakos

cmyOenm mazicmpamypu (axyibmemy iHO3eMHUX MO8,
Kapnamcokui nayionanvuuii ynieepcumem imeni Bacuns Cmeghanuka

Knrouoei cnosa: éenuxi
MO6HI Modeni, memagopa,
ioenmucpikayia memaghop,
OOHANAWMYEAHHSL, HY/IbOGULL
3anum, KOMn)IOmMepHa
JiHegicmuxa, 06podxa
NPUPOOHOI MOBU.

VY crarti okpeciieHO mpoOrneMy aBToMaTH4HOi ifneHTH¢ikanii metadop —
OIIHOTO 3 HAWCKIAAHIMIMX 3aBAaHb y cdepi 0OpoOKM NPUPOTHOI MOBH.
basytounicb Ha TONOXEHHSX KOTHITHBHOI JIHTBICTMKH, IO BH3HA4YAE
meradopy K (QyHAaMeHTanbHUM MexaHi3M wmucienHs  (Lakoff &
Johnson, 1980), nmocmimkeHno 1 pomb £[K IHCTPYMEHTY (peHMiHry
B MOJITUYHOMY Ta MeAifHOMY auckypcax. IligkpecieHo, Mo 3AaTHICTH
JI0 MacIITa0OBAHOTO aHANi3y MeTa(pOPUYHHMX MaTepHIB € BaKIMUBOIO JUIs
BUSIBJICHHS. MAHIMYJIATHBHUX TEXHOJIOTIH, OJHAK TIPOIEC PpO3Mi3HABAHHS
MeTadop YCKIAAHIOEThCS KOHTEKCTYaJbHOIO 3aEXKHICTIO, KPEaTUBHICTIO
Ta HEOOXIAHICTIO CHIUKIONECIUYHMX 3HaHb. JIOCHIIKCHHS Ma€ Ha METi
3IIMCHEHHSI TOPIBHSUILHOI OI[IHKHM TOTEHIIaly BEJIMKAX MOBHHUX MOJeNeil
(LLM) npns BupilleHHS 3aBJaHHS aBTOMAaTUYHOI ideHTH]ikauii meradop.
Y poOoTi MOpIBHIOIOTHCS JiBa KIIOUOBI TMIAXOAHM: TECTyBaHHS 0a30BUX
MOXITUBOCTEW MOJIeNIeH 3a JOIOMOTOI0 METOAY HYJIBOBOTO 3amuTy (zero-shot)
Ta iX CHeliaji3oBaHa aJanTallisl 3 BUKOPHCTAHHSIM METOAY JOHAJIAIITYBAHHS
(fine-tuning). [locnmimxeHO e(QEeKTHBHICTh (HIArMaHCHKUX(CTAHOM HA JIUMCHb
2025 poky) wmomeneil Bix mpoBigHHX po3poOHMKIB: OpenAl (GPT-40),
Google (Gemini 2.5 Pro, Gemini 2.5 Flash) ta Anthropic (Claude Sonnet 4).
OxpeMy yBary IpHIiIEHO METOIO0IOTIi 00pOOKH eKCTIEPUMEHTATbHUX NaHUX
Ha ocHOBI koprmycy NAACL 2020 Shared Task on Metaphor Detection. /s
OLIIHKY MPOAYKTUBHOCTI MOJIEI€H BUKOPUCTAHO CTAHAAPTHI METPUKH OiHApHOT
knacuikaii: Tounicte (Precision), moBHota (Recall) Ta y3aranbHeHa omiHka
F1-Score. ¥ crarti ommucaHo mpoueaypy AOHANAIITyBaHHS Ta BUSBICHO
MPaKTUYHI 0OMEXKEHHS, OB’ sI3aHi 3 PI3HUM PIBHEM JIOCTYITHOCTI IHCTPYMEHTIB
y MpPOBIJHUX EKOCHUCTEMaxX INTYYHOTO iHTENEKTy. Pe3ymbraTé JOCIHiKEHHs
MPOAEMOHCTPYBAIM, IO (PyHAAMEHTAIbHI MOAENI TOKA3ylOTh HU3BKY Ta
He30aJaHCOBaHy E€(EKTHBHICTb, TOAI SIK MpOLEIypa JOHAJAIITyBaHHS
3HAYHOIO MIpOI0 TMoOKpailye ixHIO mpomykTuBHICTH (F1-Score 3poctae Ha
24-29%). TlopiBHAJBHUI aHaNi3 JOHAJAINTOBAHUX MOJENEH IITY4YHOTO
inTenekty BusiBuB, mo GPT-40 nmocsarae kpamioro OanaHcy MiX TOYHICTIO
ta noBHOTOlO (FI1-Score 64,20%), Tomi sik Gemini 2.5 Flash 30epirae
HEBENUKY TepeBary B TOUHOCTI. IIpoBeneHui MOpIBHAIBHUN aHaNi3 pOOUTh
B)XJIMBUH BHECOK Y JOCIIHKeHHS MoxkiuBocteil LLM ans anamnizy metadop,
JIEMOHCTPYIOUH, IO JOHAJAINTYBAHHS € BAXJIUBUM METOJAOM Uil 1XHBOI
ajanTamii 10 CKIaJHUX JIIHIBICTUYHUX 3aBIaHb.

Introduction. A new stage in the development
of cognitive linguistics, initiated by Lakoff and
Johnson’s influential book Metaphors We Live By,
revealed that metaphor is not merely a peripheral
stylistic device but a core mechanism shaping human
thought and cognition According to the theory of
conceptual metaphor, people systematically draw
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upon knowledge from concrete, bodily experienced
domains (such as journeys, wars, or construction)
in order to make sense of and structure abstract
concepts, including love, evil, or time. Metaphors
are ‘fundamental mechanisms of human cognition’
that shape our wunderstanding by projecting
everyday, familiar experiences onto abstract ideas



(Lakoff & Johnson, 1980). This function makes
metaphor a powerful device not only for everyday
communication but also for exerting targeted
influence in socially significant discourses.

The metaphor takes on particular significance
in the political and media domains, where it serves
as a key tool for ‘framing’, which is the process
of constructing social reality through language.
As demonstrated by research in the field of critical
analysis of metaphors, particularly in the works of
J. Charteris-Black, the strategic use of metaphorical
models allows communicators to simplify complex
political phenomena, give them emotional colouring
and promote certain ideological positions (Charteris-
Black, 2004). Metaphorical frames such as ‘taxes as
a burden,” ‘immigration as a flow,” or ‘the economy
as a sick organism’ do not simply describe reality,
but actively shape its perception, influencing public
opinion and political decisions (Musolff, 2000).
In this context, the ability to systematically and
scalably analyse metaphorical patterns in large
text corpora becomes a critical task for identifying
manipulative techniques, analysing propaganda, and
understanding the dynamics of public sentiment.

However, automating this process is one of the
classic ‘hard’ tasks for natural language processing
(NLP). First of all, the challenge comes from
the deep contextual dependence of metaphors:
a word can be used literally in one sentence but
metaphorically in another, which requires the system
to be able to subtly distinguish between shades
of meaning. Such a task is known as Word Sense
Disambiguation. Additionally, effective recognition
of metaphors often requires encyclopedic knowledge
that extends beyond linguistic patterns. For example,
to interpret the English expression ‘He shot down my
arguments’ as a metaphor, the system must know that
no real weapons were used and, as a result, activate
the conceptual metaphor ARGUMENT IS WAR.
This knowledge gap, which goes beyond linguistic
patterns, makes automatic metaphor recognition one
of the most difficult problems for NLP (Shutova,
2010). Moreover, language is a dynamic system
that constantly generates new metaphors that cannot
be predicted in advance, as well as included in any
dictionary or knowledge base.

With the advent of large language models (LLMs)
based on the Transformer architecture (Vaswani et
al., 2017), new opportunities for solving this problem
have emerged. Notably, in Ukrainian linguistics, the
advantages and limitations of using large language
models have been described in the context of
automating the process of genre classification of
literary texts (Pasichnyk, Yaromych, 2025). Having
been trained on vast amounts of text, these models
are capable of capturing complex semantic and
contextual patterns, potentially enabling them to
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identify metaphorical expressions. As a result, two
fundamentally different approaches have emerged:
using the model’s basic knowledge through carefully
constructed instructions without providing examples
of how to perform a similar task (the zero-shot
method) and specialised adaptation of the model to a
specific task by fine-tuning it on labelled examples.

This research paper focuses on identifying
metaphors at the level of individual lexical units,
which is in line with modern computational
linguistics methodology, specifically the MIPVU
procedure (Steen et al., 2010). Such a token-level
approach allows for the creation of the most objective
and quantifiable criteria for model evaluation.

For a long time, one of the key problems in
the study of metaphor was the lack of uniform,
consistent criteria for its identification in real
discourse. Researchers often relied on their own
intuition, which led to inconsistencies in analysis
and made it impossible to reproduce results.
To address this issue, the Pragglejaz research group
proposed the Metaphor Identification Procedure
(MIP) in 2007, the first clear and systematic
method for identifying metaphorically used words
in a text. MIP defines a reproducible, step-by-
step process: the analyst identifies the contextual
meaning of each lexical unit and then compares
it with its most basic, concrete meaning, which is
often determined by a dictionary. If the contextual
meaning contrasts with the basic meaning but can
be understood in comparison with it, the word is
marked as metaphorical (Pragglejaz Group, 2007).
This key criterion formalised the intuitive definition
of ‘understanding one thing through another’ into
a practical rule, enabling different researchers
to reliably and consistently identify metaphors,
achieving a significantly higher level of consistency.

Based on MIP, J. Steen and his colleagues
developed an extended protocol called MIPVU
(Metaphor Identification Procedure VU University)
with more detailed instructions for borderline cases.
Using MIPVU, a large corpus of contemporary
English text was systematically annotated, resulting
in the creation of the VU Amsterdam Metaphor
Corpus (Steen et al., 2010). This corpus, consisting
of 117 text fragments (~190,000 lexical units) from
four different genres (academic, news, colloquial,
literary), has become the industry’s gold standard
and benchmark. Each word in these texts was
labelled as metaphorical or literal with a high
level of agreement between annotators. Virtually
all subsequent computer studies on metaphor
identification have used the VUA corpus to train
and evaluate their models, making it a fundamental
empirical basis for the entire field.

The first wave of metaphor identification
automation coincided with the emergence of deep
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transformer models such as BERT. Researchers
have begun to use large pre-trained encoder models
(BERT, RoBERTa, etc.) to identify metaphors at the
individual word level. An important milestone was
the Shared Task on Metaphor Detection competition
at the NAACL conference in 2020, which used the
VUA corpus as the main data for evaluation.

In this competition, nearly all teams that achieved
the best results utilised fine-tuned transformer encoder
models. In general, the most successful models were
based on BERT-class architectures adapted to the task
at hand through controlled fine-tuning of specially
labelled data. This approach has, in fact, transformed
general language models into highly specialised
metaphor classifiers. The results of the competition
confirmed the effectiveness of this approach: the
winner achieved an FI-Score of approximately 77%
on the VUA test set, which significantly exceeded
the baseline models (Leong, Beigman Klebanov &
Shutova, 2020). Thus, the fine-tuned transformer
encoder has become the benchmark against which all
newer approaches are compared.

The latest achievements presented a
fundamentally different approach to understanding
language, and on this basis, large generative
language models such as GPT-3 and its successors
were developed, differing from previous BERT-class
models in both architecture and capabilities. The key
differences can be summarised as follows:

Architecture:  BERT is an  encoder-only
transformer. It reads the entire sentence at once
(bidirectionally) to create a rich contextual
representation of each word, making it ideal
for text comprehension and classification tasks.
GPT-class models, on the other hand, are decoder-
only transformers. They read text from left to right
and are trained to solve a single task: predicting the
next word. This makes them ideal models for text
generation and continuation.

The principle of fine-tuning, training, and
adaptation: BERT is tuned on a discriminative
task (e.g., ‘fill in the blank in a sentence’), which
makes it a powerful ‘expert analyst’ with a deep
understanding of context. However, to perform any
new task (e.g., identifying metaphors), it requires
fine-tuning on thousands of examples to add a new
classifier layer to its ‘brain.” GPT, on the other hand,
learns from a generative task. This training makes
it a kind of ‘universal writer’ that can perform tasks
after receiving instructions in a prompt without any
additional training (zero-shot). This ability to learn
in context, first demonstrated in the work on GPT-3
(Brown et al., 2020), made it possible to perform
tasks that previously required significant effort to
prepare data and fine-tune models.

Thus, the evolution from MIP and manual
annotation, through the first wave of automation
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with pre-trained BERT classifiers, to modern
massive generative models illustrates the progress
in metaphor identification research. Each link builds
on the previous one: The ‘gold standard’ annotations
from the MIP era are still used to evaluate
fundamental and fine-tuned models. The study aims
to explore the capabilities and limitations of the latest
available technologies (as of July 2025), determining
the extent to which modern generative LLMs can
match or surpass carefully fine-tuned models of the
previous generation in such a complex task.

The purpose of this article is to conduct
a comprehensive comparative analysis of the
effectiveness of leading large language models
for identifying metaphors using two methods:
testing the model’s capabilities using zero-shot
and performance evaluations after specialised
fine-tuning. To achieve the set goal, the following
research tasks were formulated:

e What is the initial effectiveness of the GPT-4o,
Gemini 2.5 (Pro and Flash) and Claude Sonnet 4
models in identifying metaphors without special
training?

* How significantly does the fine-tuning
procedure with a relatively small sample size (1,500
examples) improve the performance of the GPT-40
and Gemini 2.5 Flash models?

* Which of the pre-tuned models demonstrates
the best balance between precision and recall, and
how does pre-tuning affect their trade-off between
these two metrics?

* What practical limitations exist in the
ecosystems of leading Al developers regarding the
availability of customisation tools for individual
researchers?

Materials and methods. Data corpus:
NAACL 2020  Metaphor  Detection — Corpus.
The experimental part of the work was conducted
based on the NAACL 2020 Shared Task on Metaphor
Detection competition dataset, which is based on
the Amsterdam Metaphor Corpus (VUA). The VUA
corpus consists of 117 text fragments extracted from
the British National Corpus (BNC) and represents
four different genres: academic texts, news, fiction
and colloquial speech. This genre diversity ensures
broad coverage of different language styles and
contexts. All words in the corpus were annotated
according to the criterion of metaphoricity in
accordance with the MIPVU (Metaphor Identification
Procedure VU University) procedure, which is a
systematic protocol that ensured a high level of
agreement between annotators (Cohen’s coefficient
Kk > 0.8). According to MIPVU, a word is considered
metaphorical if it is used in a non-literal sense.

A subset of data from NAACL 2020 was used
for the study. In particular, /500 sentences from the
training part of the corpus were selected for model



tuning, and an official test set of 203 sentences
was used to evaluate effectiveness. This test set
contains 708 words annotated as metaphors. This
sample size was chosen to ensure the practical
feasibility of the experiments while maintaining the
representativeness of the entire corpus.

Models and tools. The study evaluated a number
of leading large language models. Using the zero-
shot prompt method, the models were used in their
original and publicly available state to test their
basic capabilities. Four artificial intelligence models
were selected for the study:

* GPT-40 (OpenAl) is OpenAl’s flagship
(as of July 2025) multimodal model, known for its
powerful reasoning capabilities and human-level
performance on many professional and academic
benchmarks. In the experiments, the model was
used via the official ChatGPT in text mode.
(https://chatgpt.com/)

* Claude Sonnet 4 (Anthropic) — an advanced
model from Anthropic, designed for reliable and
‘hybrid’ thinking in large-scale tasks. The model has
an extended context window (up to 200,000 tokens)
and is optimised to achieve a balance between speed
and cost. Access to the model was provided through
its official website for testing using the zero-shot
prompt method. (https://claude.ai/)

* Gemini 2.5 Pro (Google DeepMind) is the
most powerful version (as of July 2025) in the
Gemini series, positioned as a ‘thinking model’
with advanced capabilities in logical thinking,
coding, and multimodal understanding. In her work,
it is used as a fundamental model via the Gemini
website. (https://gemini.google.com/app)

» Gemini 2.5 Flash (Google DeepMind) — a version
of Gemini optimised for speed and cost efficiency,
providing the best compromise between price and
performance. (https://gemini.google.com/app)

GPT-40 and Gemini 2.5 Flash were selected for
the fine-tuning experiments. GPT-40 was fine-tuned
using the OpenAl API, while Gemini 2.5 Flash
was fine-tuned using the Google Cloud Vertex Al
platform. It is important to note that no fine-tuning
was performed for Claude Sonnet 4 due to the lack
of relevant public functionality in the Anthropic
API at the time of the study, nor was any fine-tuning
planned for Gemini 2.5 Pro (as of July 2025).

Experiment procedure. Zero-Shot prompt testing
strategy. Using a zero-shot prompting method, a
single unified prompt was developed for queries to
each model. The prompt was designed to clearly
define the task (identifying metaphorical words
in a sentence) and establish a strict output format.
Providing a precise definition and example of a
metaphor was intended to minimise ambiguity for
the models. The full text of the prompt used in the
study is provided below:
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You are a precise and methodical linguistic
analyzer. Your sole task is to identify words used
metaphorically in the provided sentence.

A metaphor is a word used in a non-literal sense
to create an analogy or suggest a resemblance.
For example, in the sentence “He navigated a sea of
troubles,” the word “sea’ is a metaphor.

Your output must strictly follow these rules:

List ONLY the words that are used
metaphorically.

Separate the words with a single comma and a
space.

Do not include any punctuation attached to the
words (e.g., for “track,” you must write “track”).

If you find no metaphors, you must output the
single word: none.

Do not include any
explanations, or summaries.

Sentence to Analyze:

Each test sentence was added after the line
‘Sentence to Analyse:’. This procedure was applied
to all four models without any additional tuning,
which made it possible to evaluate their basic
ability to understand instructions and metaphorical
language.

Model fine-tuning procedure. Specialised training
datasets were created from the VUA corpus for fine-
tuning, formatted according to the requirements of
each platform.

* OpenAl fine-tuning (GPT-40): A training
file was prepared in JSONL format with the Chat
Completion structure expected by the OpenAl
API. Each training example is a JSON object with
an array of messages containing messages with
the roles system, user, and assistant, where the
assistant provides the correct answer (metaphors).
This ensures that the model learns from pairs of
‘query—tresponse’.

{ “messages”: [{“role”: “system”, “content”:
“You are a linguistic analyzer. Your task is to
identify metaphorical words in a sentence. List them
separated by a comma, or output ‘none’ if there
are no metaphors.”}, {“role”: “user”, “content”:
“Sentence: \”\"There are other things he has, on
his own admission, not fully investigated, like the
value of the DRG properties, or which part of the
DRG business he would keep after the break up
ANV, {frole”: “assistant”,  “content”:
“things, on, admission, part, keep, after”}]}

* Google Vertex Al fine-tuning (Gemini
Flash): For Gemini, in accordance with the
requirements of the Google Cloud Vertex Al
platform, a separate file was created where each line
is a JSON object with the contents key. This key
contains an array of two objects with the roles user
(containing the request) and model (containing the
reference response).

introductory  text,
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{“contents”:  [{“role”:  “‘user”,  “parts”:
[{“text”: “ldentify all metaphorical words in the
sentence. Sentence: \”\”There are other things he
has, on his own admission, not fully investigated,
like the value of the DRG properties, or which part
of the DRG business he would keep after the break up
NPV role s “model”, “parts T [{ “text”:
“things, on, admission, part, keep, after”}]}]}

Gemini 2.5 Flash was fine-tuned using the
Tuning graphical interface on the Google Cloud
Vertex Al platform, where the relevant data file
was uploaded. After completing the fine-tuning, the
resulting custom models were tested on the same test
set using a unified prompt to ensure consistency.

Assessment metrics. Standard binary classification
metrics were used for quantitative measurement and
comparison of model performance in the metaphor
identification task: Precision, Recall and FI-Score.

» Precision — the proportion of words that
the model correctly identified as metaphors
among all words it labelled as metaphors. The
formula: Precision = TP / (TP + FP), where TP is
true positives and FP is false positives.

* Recall — the proportion of real metaphors
that the model successfully identified. The
formula: Recall = TP/ (TP + FN), where FN — false
negative results.

* FI-Score — the average harmonic between
accuracy and precision, providing a single balanced
assessment of overall performance. The formula: £/
= 2 X (Precision x Recall) / (Precision + Recall).

In the above formulas, TP (True Positive)
is a word that is a metaphor and has been
correctly identified by the model. FP (False
Positive) — a word that the model incorrectly
identified as a metaphor. FN (False Negative) — a
metaphorical word that the model was unable to
detect. All metrics were used to identify metaphors,
with the main focus on F1-Score as the most
balanced indicator.

Results and discussion. The effectiveness of
fundamental models (Zero-Shot Performance). In the
first stage, four models without prior specialisation
were tested to determine their ‘innate’ ability to
identify metaphors. The results presented in Table
1 indicate not only low overall efficiency, but also

the existence of significantly different, yet equally
unbalanced strategies applied by the models.

Data analysis revealed three approaches. Gemini
family models act as ‘highly accurate but cautious
classifiers.” They demonstrate the highest precision
among all tested models (Pro — 69.38%, Flash — a
record 80.68%), which proves their ability to avoid
false positives. However, this strategy comes at the
cost of low recall (Pro — 30.08%, Flash — 20.06%),
which causes the models to ignore the vast majority
(70-80%) of real metaphors.

At the opposite end of the spectrum is Claude
Sonnet 4, which employs a strategy of ‘maximum
but chaotic coverage’ and shows the highest recall
(55.23%), identifying more than half of the total
number of metaphors. However, as evidenced
by the record high false positive rate (FP=1078),
this is achieved at the expense of extremely low
precision (26.62%). A qualitative analysis of errors
showed that the model tends to label almost any
emotionally charged, abstract, or even neutral words
as metaphors, which makes its results practically
unusable without careful manual filtering.

The GPT-40 model did not demonstrate a clear
advantage in either precision or recall, achieving a
mediocre F1-Score. Therefore, it can be concluded
that none of the basic models is a reliable tool for
automatic metaphor analysis, as each of them suffers
from a critical imbalance between key metrics.

The _impact _of _fine-tuning. The fine-tuning
procedure on a relatively small sample of 1500
examples radically changed the performance of
both models, confirming its critical importance for
adapting LLM to specialised linguistic tasks.

GPT-40 demonstrated the most impressive
increase in efficiency, with its overall F1-Score
soaring from 39.79% to 64.20% — a jump of 24.4
percentage points. The key transformation was the
increase in recall (from 32.49% to 67.37%): the fine-
tuned model began to find twice as many metaphors
as its basic version. This indicates that the fine-
tuning allowed the model to move from an uncertain
strategy to a balanced and highly effective approach.

Gemini 2.5 Flash has also undergone significant
changes (F1-Score has almost doubled, from 32.13%
to 61.05%). Remarkably, the model has learned to

Table 1
Results of testing basic models (using Zero-Shot prompting)

Model TP FP FN Precision Recall F1-Score
GPT-40 230 218 478 51,34% 32,49% 39,79%
Claude Sonnet 4 391 1078 317 26,62% 55,23% 35,92%
Gemini 2.5 Pro 213 94 495 69,38% 30,08% 41,97%
Gemini 2.5 Flash 142 34 566 80,68% 20,06% 32,13%

Note: The total number of metaphors in the test sample (Ground Truth) is 708.
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Table 2
Results of testing fine-tuned models
Model TP FP FN Precision Recall F1-Score
GPT-40 477 301 231 61,31% 67,31% 64,2%
Gemini 2.5 Flash 420 248 288 62,87% 59,32% 61,05%

find a compromise: it ‘sacrificed’ its precision (from
80.68% to 62.87%) to significantly increase recall
(from 20.06% to 59.32%)).

Qualitative analysis _of errors and strategies.
A deeper understanding of the differences in model
behaviour is provided by a qualitative analysis of
their typical errors.

An analysis of false positives revealed that the
base Claude Sonnet 4 was overly liberal, often
mistakenly labelling almost any vivid or abstract
words as metaphors. For example, in the sentence
“her romance with the young king was quashed for
political reasons,” the model incorrectly labelled
political and romance, whereas only the word
quashed was metaphorical. It also often confused
metaphor with metonymy (labelling Whitehall as a
metaphor in the expression ‘throws a spanner in the
Whitehall machinery’) or marked entire idiomatic
expressions, including obviously literal words such
as friend and sue. The fine-tuned GPT-40, on the
other hand, exhibited a different pattern of errors:
it recognised metaphorical constructions better, but
sometimes expanded their boundaries excessively,
including auxiliary words in the answer (e.g., about,
shaped in the phrase “hugged about by a brood of-..
shaped like candle snuffers’) or even technical terms
such as articulated in the phrase “articulated or
double-decker trams”.

The False Negatives analysis showed that the
basic models, especially Gemini, often missed subtle
or conventionalised metaphors. They ignored the
metaphorical use of common verbs and prepositions.
For example, the fundamental Gemini model did not
recognise the metaphorical use of the word incoming
in the expression “an incoming Labour government
would turn large areas of Whitehall upside down”.
The models also had difficulty recognising creative,
unusual comparisons, such as candle snuffers in
the phrase ‘hugged about by a brood of smaller
roofs shaped like candle snuffers’, which Gemini
missed. The fine-tuning improved this situation
significantly: The fine-tuning of Gemini 2.5 Flash
has enabled it to successfully recognise both implicit
verbal metaphors (e.g., exert in ‘exert a fascination’)
and more creative constructions such as snuffers,
indicating a significant increase in its sensitivity to
less obvious cases.

A direct comparison clearly demonstrates the
effect of fine-tuning. In the sentence ‘That is the first
of many... quango-like bodies recommended by the

ISSN 2786-8001

review,” the base GPT-40 found nothing, while the
fine-tuned version correctly identified That, bodies,
and recommended. This indicates that fine-tuning not
only improves performance but also fundamentally
changes the model’s ability to perform deep
semantic analysis.

Discussion _and _methodological _conclusions.
A comparative analysis of the adjusted models
shows that, although both achieved high and similar
results, they retained their unique ‘character’.
GPT-40 is the formal winner according to the
F1-Score summary metric and the absolute leader
in terms of completeness. This makes it an optimal
tool for research aimed at maximising the detection
of metaphorical expressions, where the researcher
is prepared to perform further manual verification
to eliminate a certain number of false positives.
Instead, Gemini 2.5 Flash retained a slight advantage
in precision, which partly makes it a reliable choice
when minimising ‘noise’ in the results is a priority.

It is also important to note that at the time of the
study (July 2025), Anthropic’s public API did not
provide accessible functionality for fine-tuning,
which made it impossible to include the Claude
model in the second stage of the experiment. This
is an important practical limitation for individual
researchers and indicates varying levels of openness
and accessibility of tools across leading Al platforms,
which can significantly influence the directions and
opportunities for academic research in this field.

Conclusions. The study aimed to conduct
a comprehensive comparative analysis of the
effectiveness of leading large language models in
the task of metaphor identification using zero-shot
prompting and fine-tuning methods. The experiments
conducted provided answers to the research questions
and led to a number of important conclusions.

First, it was found that base LLMs without
special training demonstrate low and unbalanced
performance for reliably solving the task. Models
either show excessive caution, achieving high
precision at the expense of extremely low recall
(such as Gemini 2.5 Flash with an F1-Score of
32.13%) or, alternatively, generate a large number of
false positives due to their pursuit of recall (such as
Claude Sonnet 4 with an F1-Score of 35.92%).

Secondly, it has been experimentally proven that
the fine-tuning procedure on a relatively small sample
(1500 examples) is an extremely effective method
of specialising models. Both pre-trained models
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demonstrated a significant increase in the F1-Score
performance metric: GPT-40 — by 24.4% (to 64.20%),
and Gemini 2.5 Flash — by 28.9% (to 61.05%), which
indicates a high potential for fine-tuning to adapt
LLM to highly specialised linguistic tasks.

Thirdly, a comparative analysis of fine-tuned
models demonstrated that GPT-40 achieves a better
balance between precision and recall, displaying
the highest F1-Score and significantly higher recall
(67.37%), making it an optimal tool for research
aimed at maximising metaphor detection. Gemini 2.5
Flash, on the other hand, retains a slight advantage in
precision (62.87%), which can be useful in tasks that
require minimising false positives.

Fourth, significant practical limitations were
identified that characterise the differences in the
ecosystems of leading Al developers. Unlike
OpenAl and Google, at the time of the study, the
Anthropic platform did not provide public access to
fine-tuning tools, which is an important factor for the
scientific community.

Prospects for further research include expanding
the amount of training data for fine-tuning, testing
models on corpora from other languages and
genres, and moving from token-level analysis to
more complex tasks, such as identifying conceptual
metaphors and their frames. However, the results
obtained already demonstrate that properly adapted
large language models can become a powerful tool
in the hands of linguists and researchers of various
types of discourse.
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